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Abstract

In this report we present our undergraduate project, which deals with re-
searching and developing a human activity detection framework. We first
conduct a brief review of the existing practices in the field. We then ex-
plain our modular framework and the artificial neural network models we
developed for the final step of it – activity recognition. We show that our
solution can achieve promising results at over 70% accuracy while working
with near–real-time performance. We conclude the report by presenting
the results and analysing ethical concerns connected with the project.
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Chapter 1

Introduction and Motivation

Our project is concerned with labelling pedestrian activity. In order to do
so, video footage is analysed in the way that takes into account not only
individual frames, but how the image changes through time. Therefore,
activity recognition presented in this project is described as temporal.

We undertook this project without any prior experience with deep learn-
ing or computer vision, following the departure of our initial project super-
visor from the University in September 2021. Following a discussion with
the new supervisor we decided to undertake the project described in this
report. We initially stated the project objectives as follows:

• Gaining appreciation of machine learning–assisted computer vision
methods

• Recognising a set of behaviours of pedestrians from video footage

• Extending the existing image processing solutions by augmenting ob-
ject detection with analysis of the temporal aspect of video footage

• Incorporating existing solutions, such as road boundary detection or
existing object detection methods into the project

We also stated these optional goals:

• Including the derived data into other areas of the Odysseus Project,
for example into Air Quality models as covariate information

• Learning a mapping between air quality and local urban environment
using air quality sensors situated close to the cameras and then ex-
trapolating the results into other crossings covered by the cameras,
but with no air quality sensors in proximity

These objectives were inspired by two projects from the Alan Turing In-
stitute: London Air Quality Project [5] and Project Odysseus [6]. As the
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project was taking its current shape and form, we had to reconsider some of
the project aims. For example, since we decided that we want to develop a
framework that can work independently of the projects it was inspired by,
we removed the objective of incorporating the existing solutions specific to
those projects. We discarded optional goals and defined the final project
aims as follows:

• Develop a piece of software capable of labelling pedestrian activity in
provided video footage;

• The labelling of pedestrian activity should be done in real time or
near–real time;

• Gain experience in research and development of deep learning models.

1.1 Report outline

The purpose of this report is to describe the process of researching and
developing our own activity detection framework, to outline the field and
the developed framework itself and to present and evaluate the results of
the work done and propose future extensions and developments. In the
rest of this chapter we describe the projects undertaken by our supervisors
which inspired and motivated this project. Then, in chapter 2, we present
a brief review of existing human activity recognition and detection meth-
ods, followed by applicable techniques used in the field. In section 2.3 we
describe a classifier neural network that we developed to gain necessary
working knowledge of deep learning. Finally, in section 2.4 we explore in
depth the models and algorithms which are used further in the project.

In chapter 3 we describe how we carried out the planning and progress
monitoring of the project. We then introduce the modular architecture of
our activity detection framework and design choices. This is followed by
description of software tools and libraries as well as hardware used for the
project.

In chapter 4 we describe how the modular architecture of our activity
detection framework was implemented. We then describe activity recogni-
tion neural network that we implemented. We conclude the chapter with
the description of how we handle datasets and training and presentation of
CCTV dataset that we created for the purposes of evaluation.

The evaluation itself is described in chapter 5. We present results of
our work by discussing accuracy and performance of the framework that we
developed. We then analyse limitations of our solution and suggest future
work that can be carried out in connection to this project.

We conclude our report in the final chapter, chapter 6. There, we first
focus on ethical and privacy considerations that are relevant to the project.
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We analyse a common example of unplanned data deanonymisation and
then describe how our privacy considerations changed as the project de-
veloped. In an effort to self-assess our work on this project, we compare
the initial and final project plan and mention challenges faced and applied
mitigations. The chapter ends with acknowledgements.

Let us now introduce Alan Turing Institute projects which served as an
inspiration for this work.

1.2 London Air Quality Project

The aim of London Air Quality project is to understand and aid improving
air quality in London. It takes air quality sensor data and combines them
with various other data sources to more accurately estimate local air quality
and provide forecasts. One of the use cases is finding low-pollution paths
for cycling, walking or exercising. The overarching goal is to inform the
people and aid policy-makers in making more informed decisions [5].

As far as the scope of our project is concerned, the significance of Lon-
don Air Quality Project lies within the fact that Project Odysseus, de-
scribed below, is based upon the same foundations.

1.3 Project Odysseus

Project Odysseus is undertaken at the Alan Turing Institute as an aid
for policymakers in making informed decisions on tackling the coronavirus
crisis. Its aim is to aid exiting lockdown in a manner that is principled and
data-driven [6].

Crucial part of Project Odysseus is a computer vision deep learning
pipeline, the purpose of which is to provide near-real time data: pedes-
trian footfall and distancing, number and type of vehicles. The data used
is sourced from London traffic cameras, provided through the JamCams
system. The pipeline tackles the problems of camera stability, group de-
tection and estimates social distancing between pedestrians across over 500
intersections in London [21].

1.4 Motivation – need for temporal activity

recognition

The aim of this project, Classification of Pedestrian Activity via Computer
Vision, was initially motivated by the computer vision and machine learn-
ing pipelines described above. The pipeline does not currently take into
account the temporal aspect of the analysed footage. Instead, a number

8



of frames is chosen from the video footage provided, and these frames are
analysed independently. Introduction of temporal aspect to the analysis of
video footage could be used to label pedestrian activity, such as loitering or
walking, with greater accuracy, which can be of use with regards to coron-
avirus measures, as well as activity beyond lockdown analysis, but within
the scope of interest of the London Air Quality project and policymakers.
For instance, it can be used to analyse the flow of pedestrians in crowded
spaces or road safety.

While initially the project was conceived as an element of Project
Odysseus or London Air Quality Project infrastructure, it evolved to be
an independent modular action detection framework. In section 5.3 we
explore how the developed framework can be integrated into these Alan
Turing Institute projects.
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Chapter 2

Background

At the beginning of the project, author’s background was minimal. There-
fore, it was necessary to gain working knowledge in deep learning, computer
vision, toolsets and best practices.

2.1 Human activity recognition methods –

a brief review

There exists a significant number of human activity recognition methods.
They differ by input data available for classification, approach to perform-
ing the classification and type of human activities that they focus on [20].
Human activity recognition can be divided into the following categories:

• Unimodal – using a single sensor:

– Space-time – activities are represented as a set of spatio-temporal
features and trajectories

– Stochastic – statistical models are used to represent human ac-
tions, for example Hidden Markov Models

– Rule-based – a set of predefined rules is used to categorise and
label the activity appropriately

– Shape-based – involves motion modelling of human body parts

• Multimodal – combines features from different sources (sensors):

– Affective – attempts to label activities based on affective states
and emotional communication

– Behavioural – utilises gestures, expressions and auditory cues

– Social networking – focuses on human-to-human interactions
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Additionally, it is important to note that detection deals with all in-
stances of object activities in the frame, while recognition deals with one
instance at a time.

As this project relies exclusively on video footage for input, the cat-
egories that the analysis should be limited to are unimodal: space-time,
stochastic and rule-based. Since modelling of human body parts requires
relatively high fidelity video, which cannot always be guaranteed in the case
of this project, Shape-based activity recognition has also been discarded.
Below, we present some existing human activity classification methods as
examples.

2.1.1 The classic spatio-temporal unimodal method
– optical flow of human figure

This method, in its earliest form, was presented in 2003 by Efros et al.
[3]. It relies on optical flow of human figure. It delivers satisfying results
in noisy, low-resolution video and its implementation is relatively simple.
While its performance is not on par with current state of the art [7], it can
serve as a good basis for improved recognition methods based on similar
principles.

Another solution that is based on the method described above is dis-
cussed in detail in [13]. It uses clustering, which is time consuming. The
authors of the original paper claim, that even despite optimisation with
random subsampling, the clustering algorithm is not suitable for real-time
classification. When incorporating features of the model described in this
paper, care needs to be taken to assess the trade-offs between time and
result.

Finally, [8] describes methods of representing optical flow fields in a
simpler, compressed way: as four heat maps, each denoting how strong the
up/down/left/right element of the optical flow vector is. It also mentions
creating binary trees to quickly recognise extensive sets of categories, which
is not needed for this project, as we are considering cases with limited num-
ber of activity labels. GrabCut is a background segmentation algorithm,
which can be useful if the model overfits on background. Compression of
optical flow fields is also of note.

2.1.2 Trajectory Learning

This method [12] relies on online, real-time analysis of surveillance video
footage using Hidden Markov Models to encode dynamics of activities and
connecting the routes formed through trajectory clustering.

The method described in this paper could be partially relevant to the
project. It analyses human activity based not on the appearance of the
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subject, but by the trajectory of their movement. It also takes into ac-
count the predictions and anomalies – so that the trajectories of persons’
movements can be predicted and unexpected behaviour detected. There-
fore, the methods described in this work can be of most use when detecting
whether a person crossing the street is doing so in a safe manner.

2.1.3 Deep learning

The following method, described in [9], uses Convolutional Neural Networks
to learn representations of identifying data features. According to Le et al.
it outperforms the methods above, while giving the possibility of training
on unlabelled data. Also, the general idea of using Convolutional Neural
Networks as opposed to recognising hand-crafted features would be worth
investigating.

2.1.4 Summary

It is important to note that this section only serves as a brief overview
of human activity recognition methods. A comprehensive review would
constitute a substantial body of work and could form a project of its own.
Therefore, for a more detailed and comprehensive review and comparison
please refer to these enclosed articles: [20], [11].

2.2 Applicable methods used in Human Ac-

tivity Recognition

Thanks to background reading, it was also possible to identify and learn
some relevant techniques, notably Intersection of Union, which measures
similarity of bounding boxes.

2.2.1 Intersection of Union

Intersection of Union (also known as Intersection over Union, commonly
abbreviated as IoU) is a ratio that measures similarity of two bounding
boxes with regards to their position and shape. It is calculated using the
following formula:

IoUA,B =
Area(A ∩B)

Area(A ∪B)

where A and B denote bounding boxes. It is easy to see that the values of
the IoU ratio can be between 1, for two identical bounding boxes, through
fractional values for partially overlapping bounding boxes, to 0 for non-
overlapping boxes.
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Intersection of Union sees many uses in computer vision. Within the
scope of this project, it is primarily used by SORT tracking algorithm,
described in section 2.4.2 below. It is also extensively used as one of the
accuracy metrics in evaluating object detection frameworks.

2.3 Practical experiments with deep learn-

ing

Net(

(conv1): Conv2d(3, 16, kernel size=(5, 5), stride=(1, 1))

(pool): MaxPool2d(kernel size=2, stride=2, padding=0,

dilation=1, ceil mode=False)

(conv2): Conv2d(16, 32, kernel size=(5, 5), stride=(1, 1))

(dropout): Dropout(p=0.2, inplace=False)

(fc1): Linear(in features=89888, out features=256, bias=True)

(fc2): Linear(in features=256, out features=84, bias=True)

(fc3): Linear(in features=84, out features=2, bias=True)

(softmax): LogSoftmax(dim=1)

)

Figure 2.1: Structure of the binary CNN classifier

In the course of studying basic deep learning methods, as a compan-
ion to background reading and literature review, a binary classifier has
been developed in order to test freshly learned ideas. The model is a sim-
ple convolutional neural network. Its structure consists of two layers of
convolutions connected by max pooling, followed by three layers of fully
connected MLP. The structure of the model is presented in figure 2.1.

The data used to train the model consisted of footage from different
cameras in London, like the data used in the machine learning/computer
vision pipeline of the Odysseus project. Two different datasets were used
for training different instances of the model:

Training set 1 consisted of data from ten different cameras in the
positive set, making up 13% of the entire dataset. As it turned out, this
neural network is not capable of classifying images from multiple sensors
as positive because of its simple nature. Feeding the network with differ-
ent positive images confuses the weights. The outcome is, no matter the
number of training epochs, of a very similar accuracy (difference within
3%): accuracy of classifying negative set is at 100%, while the accuracy of
classifying an image as a member of positive set is below 13% – that is,
random. Example accuracy for 400 epochs:

13



(a) Filter plot (b) Example image in the Positive set

(c) Positive set element from different
sensor

(d) Negative set member

Figure 2.2: Data used in the first dataset for the binary CNN classifier

Accuracy of 0 is 100.0

Accuracy of 1 is 10.204081632653061

Overall accuracy 80.35714285714286

Training Set 2 consisted of data from just three sensors. Images from
one sensor have been labelled as positive, the remaining 2 as negative. This
training set has been prepared following the analysis of the first training
set’s lack of performance. Two versions of the set have been prepared: a
bigger one, consisting of over 24000 images in total, and a smaller one, with
around 8000 images. Due to constrained available computational power, it
was not feasible to train the model on more than 10 epochs and 50 epochs
for bigger and smaller version of the set respectively. The results, however,
were impressive: The overall accuracy of the model trained on the bigger
set was 99.81% and on the smaller set – 99.57%. Accuracy for bigger
dataset:
Accuracy of 0 is 100.0
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(a) Filter plot (b) Positive set member

(c) Negative set member example (d) The other sensor in the negative set

Figure 2.3: Data used in the second dataset for the binary CNN classifier

Accuracy of 1 is 99.4047619047619

Overall accuracy 99.8143564356435

Accuracy for smaller dataset:
Accuracy of 0 is 100.0

Accuracy of 1 is 98.60279441117764

Overall accuracy 99.56683168316832

2.4 Applicable models and algorithms

In this section we will perform a more detailed description of algorithms
that will be relevant later in the report.
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2.4.1 Object Detection with YOLO

YOLO, an abbreviation of You Only Look Once, is an object detection
framework. It has seen several revisions, notably YOLOv2 [14], v3 [15]
and v4 [2]. The aforementioned versions 2, 3 and 4 are fully convolutional
neural networks, which means that they do not rely on fully connected
layers for classification, instead using feature maps and anchor boxes [14].
As the name of the framework suggests, the idea behind it is to perform the
detection in a single step, as opposed to methods in the style of R-CNN,
which perform detection in a multi-step process. The following description
is true for YOLOv3, unless specified otherwise.

The goal of object detection is to find and identify objects from a set
of predefined object classes. YOLO finds an object by locating it on an
image and returning the bounding box around it. The network is fully
convolutional, so output is generated for each element of a feature map.
The output feature map is downsampled by a factor of 32 by convolutional
layers. In YOLOv3, as opposed to v2, the output feature map is then
upsampled twice to extract additional features at different scales.

So at each scale, the output feature map predicts a fixed number (3
according to an example in the article [15]) of potential bounding boxes
with detected objects inside per feature map element. In order to increase
stability of the network, the bounding boxes are predicted by the feature
map element located in the centre of the bounding box. Moreover, the
bounding box sizes are predicted as offsets to predefined anchor boxes (also
called priors). Anchor boxes are bounding boxes of predefined size and
dimension, hand-picked for each training dataset. To pick the optimal
predefined prior sizes, k-means clustering is used.

The shape of the output of YOLO predictions is as follows:

[tx, ty, tw, th, t0, t1, t2, · · · , tn]

where tx, ty, tw, th correspond to the bounding box position and dimensions,
t0 is the objectness score and t1, · · · , tn are probabilities that a potential
detected object belongs to a given class. Each element of the feature map
outputs 3 (again, as described in the YOLOv3 article) such sets of data. Of
note is the objectness score. It denotes the probability that the bounding
box contains an object. Since each feature map element outputs a fixed
number of bounding boxes, some are bound to be empty.

The description above also applies to YOLOv4, which introduces im-
provements to the training and recognition process. The authors of v4 call
them Bags of Freebies and Bags of Goodies, which correspond to techniques
which only influence training time while improving performance and tech-
niques which only slightly influence detection time while greatly improving
performance [2]. Overall, YOLO recognises objects with state-of-the-art
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performance while achieving real-time speeds. To achieve it, it uses fully
convolutional neural network, with feature maps predicting bounding boxes
as offsets to priors.

2.4.2 Object Tracking with SORT

Simple Online and Realtime Tracking, abbreviated as SORT, is a lean
object tracking method based on classical algorithms: Kalman filter, in-
tersection of union and Hungarian algorithm [1]. The purpose of tracking
is to assign a unique identifier to each object in order to identify it across
frames of video footage. SORT is an online tracker, which means that it
only takes into account earlier frames in order to obtain results for the
current frame. This is in opposition to batch trackers, which obtain results
for a given frame based on frames both from the past and future.

SORT assumes constant velocity of tracked objects and constant aspect
ratio of their bounding boxes. For each frame, it first predicts new positions
for bounding boxes of tracked objects based on their estimated velocity.
Then, it uses intersection of union, described in section 2.2.1, to match
predicted bounding boxes with actual object positions on the new frame.
In case there are multiple overlapping bounding boxes, assignment is solved
optimally using Hungarian algorithm. There is also a threshold for minimal
IoU overlap, below which tracking identity is discarded. This is done in
order to minimise the number of false positives.

In order to estimate the position of tracked objects, Kalman filter is
employed. In order to estimate position at time t, the following recursive
formula is used:

Et = Et−1 + KG(Ep − Et−1)

where Ep is the position based on constant velocity estimation, Et−1 is the
position at previous frame and KG is the Kalman ratio. Kalman ratio is
calculated as follows:

KG =
Ep

Ep + Em

Where Em is the position based purely on measurement, in case of SORT,
position of the matched bounding box. Objects that newly entered the
field of view for tracking are initialised with Ep = 0 in order to account for
the fact that initially the velocity of the new object is unknown.

Overall, the SORT method, outlined above, offers performance compa-
rable to other state-of-the-art methods, while being online and significantly
faster, at roughly 260 frames per second [1].
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Chapter 3

Methodology and Architecture

In this chapter we will discuss the approach and toolset chosen for the
project. We will start by outlining the methodology which was chosen to
aid day-to-day and week-to-week planning and generally make the work
structured. Afterwards, we will describe the overarching design and each
component of software architecture which forms the basis of this project.
This will be followed by justification of the chosen toolset and a brief de-
scription of hardware used for implementation and testing.

3.1 Methodology

From the beginning it has been agreed that weekly meetings should be
organised. These meetings served the purposes of tutoring, monitoring
and planning. They usually included questions and discussion on progress
and challenges or background reading, especially in the earlier phases of
the project. We would also discuss progress and agree on a plan for the
following week.

While we have not explicitly chosen nor discussed choosing to adhere
to any particular widely known named project management methodology,
the methodology can be with confidence called “iterative”. This is due to
the structure and content of weekly meetings. Therefore the time between
the meetings would constitute an informal “sprint”.

As we have already mentioned in the introduction in chapter 1, we have
started this project with no prior experience with machine learning, deep
learning or computer vision. Because of that, substantial amount of time
had to be accounted for for background reading, gaining working knowledge
and crucial experience of deep learning, followed by familiarisation with
tools and methods standard in modern computer vision research.
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3.2 Architecture

In this section we will discuss the software architecture which forms the
basis of the software part of the project. From now on we will address it
as “framework”. First, we will focus on its modular design, followed by
describing the purpose of each module.

3.2.1 Modularity

Figure 3.1: Modular design of the activity detection framework

Let us first briefly consider some of the project’s main objectives:

• It has to be a recognition system, which means that it has to detect
all occurrences of a given set of actions in the given footage;

• The recognition model has to take into account the temporal dimen-
sion;

A bit of thought on the objectives above leads to the following:

• In order to recognise an action, we need to identify an agent which
can perform a given action, for example a person;

• If the object recognition above is performed on a set of static images,
namely frames of video footage, we need a way to track objects, so
as to identify an agent which performs given action across frames.

• The data available for activity recognition are the footage, either indi-
vidual frames or as a whole, dimensions and position of the bounding
boxes around the objects (agents) recognised and the position over
time, that is movement of the bounding boxes.
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Following this analysis, we decided to design a modular three-step ar-
chitecture, a data pipeline for videos. The modules are Object detection,
Object tracking and Activity recognition or detection. The purpose of each
of the modules maps directly with the analysis above: Object detection
handles identifying agents, which perform actions to be recognised, for ex-
ample people; Object tracking ensures that the agents are identified across
frames. Finally, activities can be assigned an action label by the activ-
ity recognition model. This design makes it straightforward to experiment
with different object detection models or tracking algorithms.

3.3 Software and tools

As far as Deep Learning is concerned, Python is a de-facto standard pro-
gramming language. It is used by most of research mentioned in this report.
Python version used during development of the project is 3.9.7. Notable
Python frameworks, tools and libraries used in this project include:

• Jupyter 4.9.2 – Jupyter, more notably Jupyter Notebook, is a tool
which allows literate programming and evaluation of snippets of code.
It was useful for prototyping new elements of the framework and car-
rying out experiments. In the final project Jupyter notebook files are
used instead of plain Python where it is useful to visualise progress,
see intermediate results next to applicable code or plot figures.

• Matplotlib 3.5.1 – This package, mainly its library pyplot, is used for
plotting to visualise loss and accuracy during training and together
with seaborn for illustrating models performance for evaluation.

• NumPy 1.21.5 – Numpy arrays are de-facto standard for exchanging
complex multi-dimensional data between libraries, namely Pandas,
PyTorch, Pillow and Scikit. NumPy’s internals are written in C,
which makes it faster than standard native Python data.

• OpenCV 4.5.5 – OpenCV is a computer vision library. It is used
for conversion between colour (three-channel) and black-and-white
(single-channel) image data, saving cropped video clips in dataset
preparation and reading video footage from files.

• Pandas 1.4.1 – Used for loading CSV files for dataset processing.

• Pillow 9.0.1 – Pillow is a fork of PIL, Python Imaging Library. It is
mainly used for image data conversion between NumPy and OpenCV.

• pip 20.3.4 – pip is the package manager for Python. There exists a
different package manager designed with complex projects and data
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analysis/machine learning in mind. It is called Conda. During early
stages of development Conda was used instead of pip. However, pip
was finally chosen due to the fact that Conda was slow and could
not resolve some combinations of versions of dependencies which pip
handled without any issues. Also, author’s personal preference is lean
solutions and pip is arguably leaner than Conda.

• PyTorch 1.10.2 – PyTorch is a Deep Learning library, which allows
building neural network models, performing complex computation
tasks on GPU.

• Scikit-learn 1.7.3 – Scikit is used mainly for calculation of model
evaluation metrics.

• seaborn 0.11.2 – This package is essentially an extension to Matplotlib
which aids plotting more complex visualisations, such as confusion
matrices.

• tqdm 4.62.3 – The purpose of this package is mainly informative and
decorational. It displays a progress bar for dataset processing and
during training and evaluation of the model. It also estimates time
elapsed.

We use Git for code version control. A private Github repository has
been created and used for backups. Due to substantial size of some datasets,
the backups on Github are not comprehensive. We are aware that this poses
a serious risk in case of hardware failure, so an additional local backup is
stored on a USB hard drive.

Internal project notes were taken using Markdown, which is a simple
markup language. It can be converted into LaTeX using tools such as
Pandoc. This allowed keeping all project data in one place. The author
is used to note taking in physical notebooks, which could have caused
problems recreating the research and development process for this report.

3.3.1 Choice of object detection method

Object recognition methods considered for this project included different
revisions of YOLO [14] [15] [2] and Faster R-CNN [16]. The main dif-
ference between YOLO and R-CNN is the approach to object detection:
YOLO performs everything as a single run of a convolutional neural net-
work, focusing on performance, while Faster R-CNN uses a two-step ap-
proach, aiming to maximise accuracy. While both methods claim to be
real-time or almost real-time, their performance and results differ signifi-
cantly. Faster-RCNN claims speeds of approximately 5 frames per second.
YOLO, depending on the version, claims from slightly under 30 to over
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50 frames per second. Comparison of backbones, discussed in [15], shows
that YOLOv2’s Darknet-19 has the most time-efficient backbone at 171
fps, YOLOv3’s Darknet-53 follows at 78 fps, while R-CNN’s ResNet-101
achieves 53 fps. We opted for YOLOv3. While it achieves less accurate
results than YOLOv4, it is significantly faster than v4 and R-CNN and
the results of v3 are much better than those of YOLOv2. It has been
noted in [1] that tracking performance strongly depends on detection ac-
curacy, so speed and accuracy have to be balanced to achieve both high
quality predictions and satisfactory near–real time performance. Techni-
cally YOLOv4 at 23 to 38 fps could achieve higher quality predictions than
chosen YOLOv3, but we need to take into account that object detection is
not the only model taking computation time in this framework.

3.3.2 Choice of object tracking method

The object tracking method was chosen based on the Multiple Object
Tracking challenge (MOT challenge) [10]. Its results show that the major-
ity of well-performing trackers cannot be used in real-time environments.
This is due to the fact that their performance is in most cases a mere
couple of frames per second and the “batch” nature of the trackers: while
calculating the tracking identifiers of the objects, they take into account
frames both in the past and in the future relative to the frame currently
processed. SORT, that is Simple Online and Realtime Tracker, has been
chosen for several reasons. First of all, its performance is state-of-the-art
at 260 frames per second. Secondly, it is an online tracker, so it calculates
results for a given frame only based on the frames from the past. Finally, it
is a lean solution based on classical algorithms, which matches our personal
preference. There exist various modifications of SORT, such as DeepSORT
[23], which sacrifice some performance to reduce the number of identity
switches. For our purpose, identity switches are not a problem since, as
we will describe soon, we need to track the object for at most 60 frames
anyway.

It is worth noting that the framework is modular and, as we will describe
in chapter 4, it is relatively straightforward to adapt object detection and
tracking methods to work with the framework. Therefore, we would like
to think of the object detection and tracking methods chosen as examples
rather than definitive, firm, unchangeable choices.

3.4 Hardware used

Hardware used for development and tests of the entire framework and ac-
tivity recognition model in particular was a laptop with 16GB of RAM and
GeForce 3050 RTX mobile graphics card with 4GB of Video RAM.
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Chapter 4

Network description and
Implementation

In this chapter we will explain the implementation of the entire activity
detection framework. We will then focus on the implementation of the
activity recognition models and handling of data.

4.1 Architecture Implementation

In this section we will focus on implementation of the modular activity
detection framework.

4.1.1 The main driver code

The main file of the framework, which performs the detection on a video, is
called main detect.py. Due to wrappers, described below, it is a relatively
short and simple algorithm (see Algorithm 1).

Algorithm 1 The Main detection of the framework

V ideo← the video file
Frame← the first frame of V ideo
Tracks← an empty list
while V ideo is not at last frame do

Detections← ObjectRecognitionWrapper(Frame)
Track ← ObjectTrackingWrapper(Frame,Detections)
Tracks← Tracks ∪ {Track}
Frame← the next frame of V ideo

end while
Actions← ActivityRecognitionWrapper(V ideo, Tracks)
Draw and output Actions
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The algorithm first loads needed models into memory, then proceeds
with the processing. It iterates through the frames of the video to recognise
people on each frame. The recognised bounding box data is then passed
through a tracking algorithm to identify the bounding boxes across frames.
The intermediate output of the tracking algorithm for each frame is saved
for future use. Finally, activity recognition is performed. The wrapper
is provided with raw video footage and tracking data and handles data
preparation. At the end, the results are saved or displayed.

4.1.2 Object Recognition wrapper

The Object Recognition wrapper object has to implement the following
methods:

• init () – the class constructor. The constructor should initialise
and load Object Recognition model into memory. It can have optional
arguments if needed. They should be optional and provided with
defaults, though.

• detect(image) – This method accepts one argument, image, which
represents an image, probably a frame of video footage, in NumPy
array format. It returns a NumPy array of detections.

• display(image, detections) – This method accepts two arguments:
image in matplotlib-compatible format, for example as a NumPy ar-
ray, and detections, that is a list of detections, probably the output
of the detect(image) method. It displays the image and plots the
bounding boxes with captions on the image. This method is only
used for testing purposes, it is not necessary to run main detect.py.

In the code provided, the file yolo3wrapper.py implements Object
Recognition wrapper for YOLOv3. detect(image) returns detections in
a NumPy array containing a list of detections. Each detection is of the
following format:

[x1, y1, x2, y2, c, cls]

where x1, y1, x2, y2 are bounding box coordinates, c is detection confidence
and cls is the class identifier. Class identifier is important since YOLOv3
used in this example is pretrained on the entire COCO dataset. It is there-
fore important to filter out any detected objects which are not people.
Detection also discards bounding boxes of size below a certain threshold.
By default this has been set to the width of 4 and height of 6, but this can
be changed by passing optional arguments to the init () method. This
is due to the fact that at such resolution it is unlikely to get any meaningful
activity labels.
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4.1.3 Object Tracking wrapper

The object tracking wrapper has to implement the following methods:

• init (classes to track, video) – the class constructor. The
constructor should initialise, set up and load the model. It must
accept two arguments. The first one, classes to track, is an array
of integer object class identifiers. The Object Tracking will only track
recognised objects which are of a class included in this array. The
second argument, video, is a video object, described in subsection
4.1.4 below.

• track(image, detections) – The purpose of this method is to up-
date the tracker with a new frame. It accepts two arguments: image –
an image in the format of a NumPy array, probably the new frame of
the analysed video footage; detections – output of detect(image)
method from the Object Recognition wrapper. It returns a NumPy
array with bounding boxes from the frame (detections) assigned to
unique tracking identifiers.

• display frame(image, tracks) – Again, this method is not strictly
required by main detect.py. It is used mostly for testing and de-
bugging purposes. The purpose of this method is to draw the frame
passed as the first argument (image) and plot onto it bounding boxes
labelled with tracking identifiers, passed as the second argument
(tracks).

It is important to note that the tracking wrapper object is supposed to
save intermediate tracking data for a particular video footage between the
calls of track method. That is why the video is passed as an argument
to the class constructor and not to the track method. This makes each
instance of the object tied to tracking one particular video footage. This
approach works well with simple, lean trackers, but is suboptimal if the
model for tracking needs a lot of time to be loaded into memory. This
design of Object Tracking wrapper constrains Object Tracking frameworks
to online frameworks.

In the code provided, the file sortwrapper.py implements Object Track-
ing wrapper for Simple Online and Realtime Tracker. track(image, detections)

returns tracked bounding boxes for the frame given in the following format:
the NumPy array contains a list of bounding boxes represented as such:

[x1, y1, x2, y2, id]

where x1, y1x2, y2 are bounding box coordinates, while id is the tracking
identifier. There are no guarantees that the number of bounding boxes
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that are passed in detections to be tracked will be the same as the num-
ber of bounding boxes returned by the tracking method. This is firstly
due to the fact that some input bounding boxes may be filtered out be-
cause of not being in classes to track list. The other reason is that the
implementation of sort used makes no such guarantees [1].

4.1.4 VideoWrapper object

The purpose of the video object is to represent video footage in a way that is
easy to use from the other wrapper classes. VideoWrapper’s main aim is to
make OpenCV procedures more legible. It was initially a part of the Object
Tracking wrapper, but we decided to move it to a separate class. This
decision was made on the following grounds: to allow greater encapsulation,
useful for privacy, as described in privacy considerations (see subsection
6.1.3); and because of good practice of object oriented programming to
implement classes as single-purpose objects.

The VideoWrapper class is implemented in the videowrapper.py file.
It implements the following methods:

• init (videopath) – The class constructor. It initialises an OpenCV
VideoCapture object. The argument videopath is technically op-
tional, as it loads a sample video by default.

• load video(videopath) – This method loads a new video to the in-
stantiated object. The behaviour is undefined when a VideoWrapper
object is first initialised with one video footage, then passed as an
argument to Object Tracking and then the video footage is changed
using this method. There are no safeguards to prevent this and it has
not been tried, but we foresee possible strange behaviour.

• set next frame(frame number) – This method accepts one argu-
ment – frame number – which is the number of the frame to be re-
turned by one of the get next frame methods. This method will set
the frame number to the last frame of the footage if the frame number
passed as an argument is too big.

• get frame count() – This method returns an integer containing the
length of the video in frames.

• get video resolution() – This method returns a tuple of integers
– width and height of the video footage in pixels.

• get video framerate() – This method returns an integer containing
the framerate of the video in frames per second.
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• get next frame nparray() and get next frame cv2() are methods
which return the next consecutive frame of the video. The order of
the frames returned by these methods can be changed by calling the
set next frame method. The ... nparray version of the method
returns the frame as a NumPy array while the ... cv2 version returns
an OpenCV-format image.

4.1.5 Activity Recognition wrapper

Activity Recognition wrapper is a wrapper for the activity recognition mod-
els, developed for this project. It is not used for training, only for evalua-
tion. The wrapper must implement the following methods:

• init (action classes) – The class constructor. It accepts a sin-
gle argument action classes which is an array of strings represent-
ing activity names to be used to label recognised activities. It should
initialise the model and load it into memory. The constructor can
have optional arguments if they have a default value.

• predict(video, saved tracks) – This method returns a dictionary
where keys are bounding box tracking identifiers and values are ac-
tion label predictions. It accepts two arguments: video, which is a
VideoWrapper object and saved tracks, which is an array of out-
puts of Object Tracker’s track method for each frame. It is the
responsibility of this method to ensure proper data preparation and
prediction.

In the code provided, the Activity Recognition wrapper is implemented
for two versions of the ActionCNN 3-dimensional convolutional neural net-
work. Both versions will be described in section 4.3 below. The wrappers
are saved in files actioncnnwrapper.py and actioncnnposwrapper.py.
They both implement another pair of helper methods:

• data preparation batch(video, saved tracks) – This helper method,
as the name suggests, performs data preparation, further described
in section 4.3.2.

• predict no data preparation(data array) – This helper method
accepts only one argument, data array, which contains data pre-
pared for activity recognition. It returns the exact same dictionary of
bounding box tracking identifiers and action labels as in the predict

method. It not only runs the model, but also processes the output to
this dictionary form.
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4.2 Activity Recognition model based on 2-

dimensional Convolutional Neural Net-

work

The first model for activity recognition failed. It was based off of the idea
that frames of the video can be “squeezed” into a singe dimension, allowing
for a standard 2-dimensional convolutional neural network to classify it. We
will skip its description as it is irrelevant to the final project. It is important
to note that failure of this model necessitated some special planning and
mitigation, described in section 6.2.2.

4.3 Activity Recognition model based on 3-

dimensional Convolutional Neural Net-

work

The second model developed for activity recognition turned out to perform
well, as it will be discussed in chapter 5.

4.3.1 Basic model

The basic model, depicted in figure 4.1, is a small and rather common
convolutional neural network. The only noticeable difference is that it is
3-dimensional, as opposed to 2-dimensional. The network uses Maximum
pooling and Rectified Linear function. Its input is a 60 × 60 × 20 tensor,
for 60 frames times 20× 60 frame resolution. It outputs a vector of size 6,
each field being the probability that the input belongs to an activity class,
for a total of 6 possible classes.

4.3.2 Data Preparation

Data preparation is a process which turns the video footage and a list of
tracked bounding box coordinates into the format accepted by the model.
The data preparation steps are as follows:

1. Crop the video and obtain a set of videoclips cropped to bounding
box contents

2. Resize the obtained videoclips to 20× 60 resolution

3. Pad the time of the clips: loop each of them until 60 frames long

4. Save each prepared clip
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ActionCNNModel(

Sequential(

(0): Conv3d(1, 16, kernel size=(2, 3, 3), stride=(1, 1, 1))

(1): BatchNorm3d(16, eps=1e-05, momentum=0.1, affine=True,

track running stats=True)

(2): ReLU()

(3): MaxPool3d(kernel size=(1, 2, 2), stride=(1, 2, 2),

padding=0, dilation=1, ceil mode=False)

(4): Dropout(p=0.5, inplace=False)

(5): Conv3d(16, 32, kernel size=(3, 2, 2), stride=(1, 1, 1))

(6): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True,

track running stats=True)

(7): ReLU()

(8): MaxPool3d(kernel size=(2, 2, 2), stride=(2, 2, 2),

padding=0, dilation=1, ceil mode=False)

(9): Dropout(p=0.5, inplace=False)

(10): Conv3d(32, 64, kernel size=(2, 2, 2), stride=(1, 1, 1))

(11): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True,

track running stats=True)

(12): ReLU()

(13): MaxPool3d(kernel size=(4, 3, 3), stride=(4, 3, 3),

padding=0, dilation=1, ceil mode=False)

(14): Dropout(p=0.5, inplace=False)

(15): Flatten(start dim=1, end dim=-1)

(16): Linear(in features=1536, out features=128, bias=True)

(17): ReLU()

(18): Dropout(p=0.5, inplace=False)

(19): Linear(in features=128, out features=6, bias=True)

)

)

Figure 4.1: The basic model structure

4.3.3 Later addition – bounding box position track-
ing

Bounding box position tracking in this model was realised by adding a
single fully-connected layer alongside the convolution. This fully-connected
layer accepts the input of length 240, which stands for 4 elements per
frame. These elements are [x1, y1, x2, y2] – the coordinates of the top left
and bottom right corner of the bounding box at each frame. The network
is otherwise the same as in the basic model. The full description of the
network is shown in figure 4.2.
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ActionCNNPositionModel(

(cnn network): Sequential(

(0): Conv3d(1, 16, kernel size=(2, 3, 3), stride=(1, 1, 1))

(1): BatchNorm3d(16, eps=1e-05, momentum=0.1, affine=True,

track running stats=True)

(2): ReLU()

(3): MaxPool3d(kernel size=(1, 2, 2), stride=(1, 2, 2),

padding=0, dilation=1, ceil mode=False)

(4): Dropout(p=0.5, inplace=False)

(5): Conv3d(16, 32, kernel size=(3, 2, 2), stride=(1, 1, 1))

(6): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True,

track running stats=True)

(7): ReLU()

(8): MaxPool3d(kernel size=(2, 2, 2), stride=(2, 2, 2),

padding=0, dilation=1, ceil mode=False)

(9): Dropout(p=0.5, inplace=False)

(10): Conv3d(32, 64, kernel size=(2, 2, 2), stride=(1, 1, 1))

(11): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True,

track running stats=True)

(12): ReLU()

(13): MaxPool3d(kernel size=(4, 3, 3), stride=(4, 3, 3),

padding=0, dilation=1, ceil mode=False)

(14): Dropout(p=0.5, inplace=False)

(15): Flatten(start dim=1, end dim=-1)

)

(bbox tracking): Sequential(

(0): Linear(in features=240, out features=60, bias=True)

(1): ReLU()

(2): Dropout(p=0.5, inplace=False)

)

(out network): Sequential(

(0): Linear(in features=1596, out features=128, bias=True)

(1): ReLU()

(2): Dropout(p=0.5, inplace=False)

(3): Linear(in features=128, out features=7, bias=True)

)

)

Figure 4.2: The model structure with the addition of bounding box tracking
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4.4 Datasets

The aim of this section is to describe how the dataset used for training and
evaluation of the model was preprocessed. In addition to the KTH dataset
[17], an additional small custom dataset was prepared as well. The training
process is also outlined.

4.4.1 Dataset preprocessing

KTH Dataset consists of video clips divided into 6 classes: boxing, hand-
clapping, handwaving, walking, jogging, running. Each video clip contains
on average four examples of these activities. In order to use the dataset with
our models, it is necessary to divide footage into single examples. While
doing so, we crop the videos to bounding boxes and save their location over
time alongside. Please refer to algorithm 2.

The script is saved as KTH-Split.ipynb for a version that does not
save bounding box location; and KTH-Split-tracked.ipynb for a version
that does. Keeping both versions is a convenience and their principles are
otherwise identical.

Algorithm 2 Dataset preprocessing

Files← a list of videos and timestamps of the beginning of the examples
for all V ideo, T imestamps ∈ Files do

for all Timestamp ∈ Timestamps do
Frame← the first frame of V ideo
Tracks← an empty list
while V ideo is not at next Timestamp do

Detections← ObjectRecognitionWrapper(Frame)
Track ← ObjectTrackingWrapper(Frame,Detections)
Tracks← Tracks ∪ {Track}
Frame← the next frame of V ideo

end while
CroppedV ideo← CropToBoundingBoxes(V ideo, Tracks)
Save(CroppedV ideo)
Save(Tracks)

end for
end for

We assume that the output of the tracking algorithm is error-free and
we save a single video clip for each activity example.
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4.4.2 CCTV Dataset

In addition to KTH dataset, a small custom dataset was prepared for eval-
uation purposes. It consists of two activity classes: standing and walking.
It was created by choosing by hand video files where all the people were
standing or walking for their entire duration. The script that was used
to generate the dataset is called Standing Set Gen.ipynb. The dataset
output by this script is already preprocessed for training the model.

Algorithm 3 Generation of CCTV dataset

for all Video in Videos do
Frame← the first frame of V ideo
Tracks← an empty list
while V ideo is not at last frame do

Detections← ObjectRecognitionWrapper(Frame)
Track ← ObjectTrackingWrapper(Frame,Detections)
Tracks← Tracks ∪ {Track}
Frame← the next frame of V ideo

end while
CroppedV ideos← CropToBoundingBoxes(V ideo, Tracks)
for all CroppedVideo in CroppedVideos do

Save(CroppedV ideo)
end for

end for

This method of dataset creation is fairly efficient if we find videos of
crowds waiting to cross the street or walking. The quality of video clips
obtained is low, but it is on par with the data given as an input to the
classifier, so it should be suitable for training.

4.4.3 Training

Both models are small, so their training does not require particularly large
resources. In fact, data preparation takes much longer to compute than the
training itself. The model was trained for 300 epochs with a learning rate
of 0.0002. Smaller learning rate sometimes led to a dying ReLU problem.
The optimiser chosen was Adam. Data was fed to the models in batches
of 32 and the weights were backed up every ten epochs. As it is visible in
figures 4.3 and 4.4, there was slight overfitting, but it did not end up being
a major issue. The accuracy was steadily increasing as the epochs passed,
as shown in figures 4.5 and 4.6. The training took between 40 minutes and
an hour to complete.
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Figure 4.3: Plot of training and validation loss for the basic model

Figure 4.4: Plot of training and validation loss for the model with bounding
box tracking
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Figure 4.5: Training accuracy for the basic model

Figure 4.6: Training accuracy for the model with bounding box tracking
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Chapter 5

Evaluation

The purpose of this section is to present how our human activity detection
framework performs. We will mainly focus on measuring the accuracy and
performance of the 3-D convolutional activity recognition model, as it was
designed and trained specifically as a part of this project. We will then
discuss limitations of the model and the entire framework and conclude
with future work.

5.1 Results

In testing the model we use the following metrics:

• Accuracy – the percentage of correctly labelled features in the testing
dataset

• Precision – this metric assesses how many recognitions of each of the
recognised activity classes are correct; in other words it is a measure
of validity of results.

• Recall – this metric assesses how many of the activities of each of the
classes were “caught”; in other words it measures sensitivity of the
model to recognise each activity class; the completeness of the results
obtained.

Precision and recall are presented both as global values and for each recog-
nised activity. In addition to that, confusion matrix is shown to visualise
what kinds of mistakes the model makes.

5.1.1 Basic 3D Convolution Results

The basic 3D convolutional neural network was the only model presented
during the presentation of the project in March. It was initially trained
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Figure 5.1: Confusion matrix for the basic 3D cnvolution – results obtained
with random sampled training, testing and validation subsets of KTH

using randomly selected disjoint subsets of KTH dataset in the following
ratios: training – 0.64, testing – 0.2, validation – 0.16 of the entire dataset.
We decided to take this approach since the training, testing and validation
sets suggested by the authors of KTH were almost equal in length, so
there was seemingly little data for training. The upside of this approach
is that – indeed – the network trained on this dataset performed well at
81% accuracy. However, since the subsets were custom and randomly
selected, each training of the model gave different accuracy (with differences
of around 10%).

We decided to perform the final testing and measurements using the
division of the data suggested by the KTH authors. As expected, the
accuracy of the model dropped significantly, positioning itself at 56.4%.
Precision and recall were similar, at 58.5% and 56.6% respectively.

Metric boxing handclapping handwaving walking jogging running

Precision 0.58 0.58 0.77 0.61 0.49 0.48
Recall 0.79 0.75 0.49 0.25 0.56 0.54

The table above presents precision and recall for each activity class recog-
nised by the model. It is worth noting that since classification is done
purely on the contents of the bounding boxes, results of classes which look
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Figure 5.2: Confusion matrix for the basic 3D convolution – results ob-
tained with training, testing and validation sets as suggested by the au-
thors of the KTH dataset [17]

similar (jogging and running) have lower recall and precision. The confu-
sion matrix in figure 5.2 shows that the most misclassified classes are those
which look visually similar.

5.1.2 Bounding Box Tracking Results

During the project presentation in March it was suggested that we should
try adding bounding box tracking to the model. It greatly improved the
recognition results – the accuracy raised to 70.5%, precision was 71.4%
and recall – 70.4%.

Metric boxing handclapping handwaving walking jogging running

Precision 0.87 0.64 0.76 0.69 0.59 0.73
Recall 0.83 0.81 0.50 0.75 0.61 0.73

We see not only a sharp rise in precision of jogging and running recognition
and recall of walking, but also a sharp precision increase in boxing. This
is expected as the main differences between these classes lie in the speed
of the agent movement. In case of boxing, we see reduced confusion with
handwaving.
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Figure 5.3: Confusion matrix for the 3D convolution with bounding box
tracking – results obtained with training, testing and validation sets as
suggested by the authors of the KTH dataset [17]

5.1.3 Reducing footage resolution

Since the results obtained with JamCams CCTV footage were highly un-
satisfying (compare figure 5.4), we decided to investigate how much we can
reduce the resolution of footage and still get sensible results. The original
resolution of KTH clips is 160× 120. We tried reducing it to 80× 60 and
60 × 40. In the case of 60 × 40 the resolution was too low for YOLO to
recognise the people, so the results presented here were obtained using the
80× 60–resolution footage.

Metric boxing handclapping handwaving walking jogging running

Precision 0.75 0.43 0.81 0.40 0.27 0.23
Recall 0.55 0.58 0.95 0.51 0.43 0.24
Prec+Track 0.91 0.52 0.27 0.20 0.08 0.19
Recall+Track 0.23 0.50 0.42 0.02 0.03 0.67

The overall accuracy was 41.1% for the basic model and 29.6% for the
model with bounding box tracking. The basic model’s precision was 48.3%
and its recall was 40.3%. When it comes to the model with bounding box
tracking, the precision was 36.1% and the recall was 30.9%. The results
are interesting, as the basic model performed better than the model with
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Figure 5.4: Confusion matrix for the basic 3D convolution. It was obtained
by training the model on the custom CCTV dataset described in section
4.4.2

Figure 5.5: Confusion matrix for the basic 3D convolution – training and
validation sets as suggested by KTH authors [17]; testing set of reduced
quality
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Figure 5.6: Confusion matrix for the 3D convolution with bounding box
tracking – training and validation sets as suggested by KTH authors [17];
testing set of reduced quality

tracking. The outliers here are: surprisingly high handwaving precision
and recall in the basic model; and relatively high recall of the running class
in the model with tracking.

We hypothesise that at this reduced footage resolution the object track-
ing was highly inaccurate and affected the results negatively, hence lower
performance of the “tracking” model.

To sum up, the global metrics for models tested in different conditions
are as follows:

Model Data Accuracy Precision Recall

Basic KTH 0.564 0.585 0.566
Tracking KTH 0.705 0.714 0.704
Basic LowRes 0.411 0.483 0.403
Tracking LowRes 0.296 0.361 0.309

The framework performed at 25–28 frames per second, making it suit-
able near-real time use. Since the convolutional neural network has to
analyse the full 60 frames, the latency of this model in online settings
would be approximately 2–3 seconds.
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5.2 Limitations

As any framework, this project has some limitations, presented below.

5.2.1 Footage quality

As shown in detail in section 5.1.3, model accuracy drops in lower resolution
of the footage. This is due to the fact that recognition is performed on the
visual contents of the bounding boxes. Usually, human figure occupies a
small fraction of the video frame, therefore the resolution of its bounding
box is low. The model limits bounding box resolution to 60 × 20 pixels
anyway, so there is a limit to how much the model accuracy can be improved
by improving the resolution of the input video.

5.2.2 Bounding box tracking

While the basic version of the model does not have such limitation, the
model with bounding box tracking has to be provided with stationary
footage. The tracking of bounding boxes is basic and handles its move-
ment with regards to the position on screen rather than in the real world.
Therefore a non-stationary footage would completely change the way that
the movement of the bounding box is perceived by the model.

5.2.3 Types of activities recognised

The way this framework works, that is classifying short snippets of low
resolution video footage, makes it suitable for a particular kind of human
activities: short, repetitive and self-contained. Short, because the architec-
ture of the model limits analysis to 60 frames; repetitive, because in case
the footage from the bounding box is shorter than 60 frames, its contents
are augmented by looping; self-contained because no information from out-
side of the bounding box is provided to the classifier. Therefore activities
such as walking, standing, dancing would probably get a higher accuracy
than for instance sitting down on a chair.

5.3 Future work

The potential of this project is still far from exhausted. There are several
ideas and possibilities which are not in scope of the project due to time
constraints, but would be interesting or beneficial to explore:

• LSTM Networks – Replacing the action classification module with
an LSTM-based version. This would allow for a fully online version
of the framework.
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• Integration into existing projects – Using Docker to create re-
producible builds of the framework would make it much easier to
include in the infrastructure of existing projects. In this case, worth
mentioning are the projects which were a direct inspiration for this
one – London Air Quality project and Project Odysseus.

• Preparing more wrappers – It would be interesting to investigate
performance of the framework with different object recognition or
tracking algorithms and compare results.
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Chapter 6

Conclusions

This chapter collects important closing remarks on the project. First, ethics
and privacy issues are considered. We follow by briefly outlining how the
project plan evolved and how we overcame challenges faced. We close the
report with acknowledgements.

6.1 Ethical Considerations

Ethical considerations play an important role in modern research, especially
research which handles real-life data and poses a privacy risk. In this part
of the report we want to explore the project from the prespective of privacy
and ethics. We’ll first consider a case of failed data anonymisation, followed
by the description of how the privacy considerations were chaining thought
the project. We will conclude by describing a design of a system which
incorporates the framework presented in this report in a safe manner.

6.1.1 Case Study

When dealing with public datasets and handling of big data in general, it
is important to consider the ethics and possible misuse by malicious agents
of data obtained using the means described in this report. The following
paragraphs outline a popular case of failed data anonymisation. It is done
in order to highlight possible ways to de-anonymise data and undertake
reasonable mitigation.

Taxicab dataset

The case study focuses on the so-called Taxicab dataset. It is a dataset
containing data of every taxi journey in New York City in 2013. The data
consists of the exact time and place of pick up and drop off for every trip, as
well as the fare and tip, hashed license and medallion number of the taxi cab
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[22]. The data was published as a result of a request of Christopher Whong,
an Open Data advocate. Mr. Whong filled in a request in accordance to
Freedom of Information Law. Although the data appeared anonymous,
since the identifying data of the vehicles were hashed and no data on the
passengers was made public, it was used in several ways to disclose various
pieces of information that were not in public domain.

First of all, the license plate and medallion number of the taxi cabs
were hashed using an MD5 algorithm, long considered unsafe at the time
the data was published [18]. Moreover, hashing is a suitable means of
data anonymisation only if the pattern of the data is unknown. When the
pattern is known, the number of possible combinations that the hash can
represent is limited and de-hashing with a brute-force method is possible.
In this case, both the license plate and the medallion number could be
easily deanonymised as they followed strict patterns. These deanonymised
data could allegedly be matched with personal data of the driver [4]. The
information obtained in this way, for example combined with historical data
of particular cab’s common routes, could be used by a malicious agent.

The second problem with this dataset has to do with the exact pick up
and drop off locations and times. Let us suppose that there is a malicious
agent who wants to target a specific vulnerable group of people, for example
a specific religious community or an LGBT people. The agent may identify
trips to or from a specific place, for example a church or LGBT club, and
infer, with some certainty, place of residence of people who frequent it.

Another issue, identified by Anthony Tockar [19], deals with the privacy
of celebrities. Due to availability of time-stamped paparazzi photos of
celebrities entering or exiting New York’s taxis, it is possible gather data
on their trips, such as origin, destination and the tip amount. The taxis
in New York City display their medallion number in various places, so the
number is legible on some of the photos. This, together with de-hashed
version of the dataset enables malicious agent to identify a trip and gather
the aforementioned pick up, drop off locations and tip amount. It has also
been claimed [4] that there exist serious discrepancies in data with regards
to tips paid in cash. This can affect not only celebrities’ privacy, such as
revealing their places of residence and places they frequent, but also one
can see potential accusations of greed etc.

Possible Mitigations

We argue that it is not possible to mitigate all of the risks identified above
by employing additional data anonymisation techniques. The vehicle iden-
tification could be easily mitigated by assigning a random identification
number to each taxi cab, instead of hashing the real values with an unsafe
hashing algorithm. It can be said that due to the nature of the data hashed,
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any hashing algorithm would be prone to a brute-force de-hashing attack.
On the other hand, the pick up and drop off locations cannot be obfuscated
without affecting the data quality. Instead of providing the exact location
data, approximate data could be used instead.

While the availability of this data can be useful for people who analyse
the city traffic or architecture and urban design specialists, we argue that it
is dangerous for privacy to collect detailed data in this form at all. It would
be much safer to isolate time of the day, approximate source and destination
from trip cost and tip data and discard trip date and vehicle identification.
Data collected in this way would be way less prone to deanonymisation
while remaining interesting sources for those who want to analyse them
without malicious intents.

6.1.2 Evolution of ethical considerations following progress
of the project

In this subsection we will outline how our awareness of the need of consid-
ering the privacy implications of our human activity detection framework
evolved. As mentioned in chapter 1 and further described below in section
6.2, the initial plan of the project was vague, therefore it was not possible
to consider all the privacy implications from the outset.

We initially assumed that it is sufficient to rely on ethical and privacy
considerations of Project Odysseus [6]. At that point we assumed that
our project will only be of use within the scope of this project, used only
on anonymised footage that Project Odysseus uses. This assumption was
essentially flawed, as it soon turned out that the scope of the project will
be more general; that one will be able to analyse any footage using it and
that it will be possible to do it in near-real time.

Initial evaluation and experiments with the 3-dimensional convolutional
neural network–based activity detection showed that the quality of anonymised
JamCams footage is insufficient for the activity detection framework devel-
oped. In fact, we believe that the increased footage quality can generally
positively impact performance of the model. Therefore, additional consid-
eration had to take place.

6.1.3 Isolation through Modularity

Let us first consider the data used and obtained at each module of the
framework.

• Object Detection – The first module of the framework is Object De-
tection. This module takes raw video footage and localises agents
which perform the soon-to-be-recognised activities. In the most gen-
eral case we cannot assume the footage is anonymised in any way.
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The new information is the location of people on each frame of the
video – it is important to note that bounding boxes are not tracked
between frames yet.

• Object Tracking – The second module of the framework is Object
Tracking. Here, the input is consecutive frames of footage with de-
tected people. The output of object tracking consists of the location
of each person in the video over time. It is important to note though,
that the location and track obtained by object tracking are purely
“positions on the screen” and do not reflect spatial positions in real
world. We consider this point of the framework to require most care
with regards to privacy, as at this point the data caries the most infor-
mation. It is worth noting that video footage itself is separated form
object tracking – the bounding box positions over time (“tracks”) are
stored separately from the footage. A crucial moment is extraction
of the bounding box contents.

• Activity Detection – Before we analyse activity detection itself, let
us consider the process of extracting bounding box contents. At this
point, footage is not only reduced to bounding boxes’ contents, but
also its quality is reduced to 20 × 60 pixels and colour channels are
removed, leading to a black-and-white footage. This reduces the pos-
sibility to recognise a particular person to the shade of their clothing,
as for instance the face is reduced to a mere dozen pixels. Activity
Detection itself handles less data than the previous module, Object
Tracking, as it takes into account only the short excerpts of bounding
box content and movement of the box.

This project does not aid or facilitate tracking of people across multiple
cameras. In fact, “tracking” refers to bounding box identification, rather
than actual tracking of people in the physical world, and is technically lim-
ited to 60 frames thanks to the design of the Activity Detection model.
However, combined with external data, such as timestamps and placement
of CCTV cameras it is technically possible to track movement of an indi-
vidual between the cameras by the colour of their clothing. It is however
possible to do with Object Detection itself, rather than our framework, and
so is not in scope of our analysis – we have no power to mitigate it.

As mentioned previously, each of these modules works independently.
In critical use cases each module can be run on a separate machine to
minimise the amount of data available in the same place.

It is clear that the analysis performed by a single person is bound not
to be exhaustive. There is always a possibility that some database or
dataset, when combined with data obtained through this model, may be
used maliciously. The purpose of the analysis above is to show that we
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took care to mitigate identified potential problems. We truly hope that
our framework will be used in a responsible and privacy-respecting manner.
We therefore welcome any further feedback regarding privacy and ethical
considerations in connection with human activity recognition in the scope
of this project and in general.

6.2 Management

We will now briefly describe how the project evolved during our work on
it.

6.2.1 Evolution of the plan of work

The initial plan accounted for the fact that the scope of the project was
not yet known. Therefore it was rather vague.

Week Event

T1 W2 Submission of this document

T1 W2-4
Literature review on Machine Learning and Com-
puter Vision

T1 W5-6
Familiarising with relevant existing technologies and
methodologies used within the Odysseus project

T1 W7-10
Exploring the possibilities of incorporating temporal
aspect into object classification

T1 W9 Submission of Progress Report

Christmas Holidays

T2 W1 Writing the first outline/draft of the Final Report

T2 W2-W7
Developing a solution to recognise temporal activi-
ties of pedestrians, such as walking, gathering, loi-
tering, entering or exiting a building.

T2 W9-W10 Project Presentation

Easter Holidays

T3 W1 Submission of Final Report

In December, at the time when the Progress Report was due, we had
the literature review ready and the experimental binary classification model
described in section 2.3 complete. In the second term the main focus was
put on developing the main pedestrian activity detection framework, train-
ing the models. During this time we also prepared the project presentation.
Following the advice received during the presentation, we conducted addi-
tional development by adding bounding box position tracking to the model
and made additional tests. The work on the project concluded with writing
this final report.
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6.2.2 Challenges

Since the initial plan, the project has experienced a number of issues, closely
described below. Some of them have a source in the fact that the initial
Project Specification had to be delivered within mere days of the decision
to change the subject of the project.

Hurried Planning

Due to changing the subject of the project at the last moment, Project
Specification had to be written in one day. This resulted in a vague specifi-
cation and work schedule relied mostly on tasks that were agreed on during
weekly meetings. Another drawback is that it was not possible to assess
the progress of the project with precision. In the progress report we at-
tempted to estimate whether the project was on track. We later made use
of TO-DO lists to track tasks due.

Insufficient Background

The initial plan for the project was to develop a tool for seamless audio
splicing with prof. Tanaya Guha. However, upon Tanaya’s departure from
the University, the project has been assigned to prof. Theodoros Damoulas.
Due to a different area of expertise of Theodoros, it has been decided to
change the subject of the project at the last moment. However, the author
had no prior background in deep learning or computer vision. Therefore,
as a mitigation, a significant amount of project time has been assigned to
background reading and literature review. This made it possible to gain
the experience needed to complete the project.

Communication issue

The issue identified in December during the work on the Progress Report
concerned communication between the author and the Project Supervisors.
The concern raised was that weekly meetings are unfocused and unproduc-
tive. It was mentioned that the results of work are not discussed in enough
detail or presented at all; that problems to be discussed were not stated
in a way rigorous enough to warrant an insightful and meaningful answers;
that the structure of the meetings was unplanned and therefore chaotic.
As a mitigation, the following measures were introduced:

• Rewriting of handwritten personal notes to Markdown documents
inside the project git repository

• Making the project git repository available for Project Supervisors
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• Sharing the weekly meeting agenda with Supervisors via email in the
evening preceding the meeting

• More rigorous presentation of work during weekly meetings – includ-
ing summary of the notes taken and analysis of results

This issue tackled the methodology of work, and not the progress itself,
therefore it did not impact the schedule. The weekly meeting agenda did
not affect the amount of time needed to prepare for the weekly meetings, as
it had always been prepared ahead of the meetings; we just concluded that
it was a good idea to share the agenda with the supervisors. Rewriting
the handwritten personal notes to markdown helped with preparing the
project presentation in March and the Final Report.

Underperformance of the 2-dimensional convolutional neural net-
work

The model that we initially planned to implement for activity recognition
did not give any good results. Its output was essentially close to random.
We had to mitigate by designing another model, which turned out to be a
3-dimensional convolutional neural network and alter the schedule to allow
some time to implement and test it. The modular nature of our framework
helped a lot and allowed us to reuse a big portion of the code. Time was
reassigned from preparing the March presentation, which had to be written
and rehearsed in three days instead of a week. The mitigation succeeded
and the performance of the new model turned out to be satisfactory. The
presentation, although made more risky by this decision, went well as well.
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